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Introduction

Intelligence is a feature of humans (Homo sapiens sapiens), which distinguishes us in part from other

species.

In evolution, human intelligence, together with the socialization in groups, markedly enhanced by
the development of gesturing and speech, allowed us to survive despite an overall weak physical

constitution.

Indeed, intelligent thinking allowed mankind to use and create tools and weapons, develop

agriculture, and eventually, modern technology and medicine.

For centuries, there was consensus that human-level intelligence can only arise from biological
human brains yet rapid technological advances in the recent years have led to exponential growth in
the number of intellectual tasks that now can be solved by computer-based artificial intelligence

(AI), putting this long-held believe into question.
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Table 1 Glossary of keywords

Artificial intelligence

Convolutional neural
network

Deep learning

Deep neural network

Large language model

Machine learning

Natural language
processing

Abbreviation

CNN

DL

DNN

LLM

ML

NLP

Brief explanation

Al is the technology that enables machines, in particular computer systems, to mimic human cognitive function.
It integrates tasks like learning, reasoning, problem solving, perception, and understanding language, allowing
computers to derive insights from data, make informed decisions, and solve complex problems.

CNN represents a specialized architecture tailored for analysing visual imagery, within the broader category of
DNN. They utilize convolutional layers that apply filtering operations to efficiently capture spatial patterns in
the data. This makes CNN exceptionally skilled at tasks like image and video recognition, improving their
ability to interpret intricate visual inputs.

DL, a specialized area within ML, utilizes multi-layered neural networks to learn from vast datasets with little
need for manual feature engineering. This approach is highly effective for complex tasks, including image and
speech recognition, as it allows the networks to autonomously discern and analyse various data elements.

DNN is a sophisticated DL structure in computational models, primarily designed to analyse and process
complex data patterns similar to the human brain. This type of network utilizes multiple layers ('deep’) of
processing units to learn from vast amounts of data, enhancing its ability to make accurate predictions and
decisions.

LLM are advanced DL models, such as the Generative Pre-trained Transformer (GPT), trained on extensive
text data. These models excel at generating human-like text and understanding natural language, allowing
them to process and produce language effectively.

ML, a branch of Al, focuses on creating algorithms and models that train computers to analyse data and make
predictions. These algorithms are not explicitly programmed for each task; instead, they enhance their
performance as they process more and more data, thereby enabling autonomous learning and
decision-making.

NLP is a field within Al aimed at enabling machines to understand, interpret, and respond to human languages in
a way that is both meaningful and useful. This technology is crucial for developing applications such as
language translation, sentiment analysis, and voice-activated systems. LLM is a type of DL algorithm designed
to handle multiple NLP tasks.
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Table 2 Data sources and analytical aspects

Data source Common analytical
approaches

Potential

Challenges

Imaging data = Deep learning
» Convolutional neural
networks
* Image enhancement
algorithms

Voice recordings * Deep learning

ECG readings * Deep neural network
= Support vector machines

Text data * Natural language processing
Tabular data (e.g. clinical * Tree-based learning
characteristics) algorithms

= Neural networks

High accuracy in image analysis

Rapid processing of visual data

Efficient pattern detection

Advanced feature extraction capabilities

Patient convenience

Continuous health monitoring
Early detection of cardiac disease
Real-time alerting systems

Patient convenience

Continuous health monitoring
Early detection of cardiac disease
Real-time alerting systems

Insight extraction from unstructured data
Heaith care efficiency

Efficient handling of complex non-linear
interactions

Efficient handling of high-dimensional data
Broad applicability

Requires extensive computational
resources
Privacy issues with personal data

Background noise

Prone to interference and noise

Ambiguity and context dependence
Language and cultural variations

Overfitting to training dataset
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ECG

Figure 3 Al/ML-enabled diagnosis of LV dysfunction based on ECG
readings. (A) Area under the curve (AUC) of detection ...
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Figure 4 Al-enhanced calculation of LVEF from echocardiographic
Images. Schematic representation of the left ventricle ...
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Figure 5 Al-based CTCA analysis. CTCA s increasingly becoming
a ‘one-stop shop’ for evaluating patients with stable ...
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Figure 6 Machine learning-based risk assessment for personalized @ ESC

care of patients with non-ST-elevation acute coronary ... o oty
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Can an artificial intelligence (Al) model detect an acutely occluded or obstructive culprit coronary artery [occlusion myocardial infarction (OMI)] lesion using
only single-standard 12-lead electrocardiograms (ECGs)?

.............................................................................................................................................................................................

Key finding

The occlusion myocardial infarction Al ECG model outperforms guideline-recommended ST-elevation myocardial infarction (STEMI) criteria in detecting
angiographically confirmed OMI and remains robust in subgroup analysis.

.............................................................................................................................................................................................

Take home message

The OMI Al ECG model has the potential to improve acute coronary syndrome triage and clinical decision-making by enabling timely and accurate detection
of OMI regardless of ST elevation. This automated deep learning approach demonstrated two times higher sensitivity in detecting angiographically confirmed
OMI from single-standard 12-lead ECGs compared to the standard of care in geographically distinct cohorts.
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Figure 1 A PRISMA flow chart showing data sources and study
populations. Suspect acute coronary syndrome patients ...
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Figure 2 Artificial intelligence model performance on the overall
testing data set. The receiver operating ...
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Europe (5.995): AUC = 0.952 (5% C1 {0.946-0.957])

— Australia (1,883): AUC = 0.933 (95% CI [0.903-0.962])

— New Zealand (2.408): AUC = 0.958 (5% Ci (0.947-0.969))
— United States (1,571): AUC = 0.925 (95% C! {0.890-0.960])
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* Receiver-operating-characteristic (ROC) curve
illustrating discrimination of the CoDE-ACS for
myocardial infarction.

* (a) Using the presentation cardiac troponin
measurement.

* (b) Using the serial cardiac troponin measurement



Figure 4 A real-world demonstration of an occlusion myocardial

infarction artificial intelligence true-positive ...
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CONCLUSIONS

AI/ML algorithms provide information not accessible for the clinician, particularly in imaging and ECG analysis
(‘see what you can’t see’).

This way, risk prediction is more precise as documented by the AI/ML-enabled GRACE 3.0 score, among others.

AI/ML-enabled information is much faster. As a consequence, physicians will have better information and more

time to discuss management options with their patients.

AI/ML-provided information on diagnostics and guideline-based therapeutic options are provided
comprehensively and timely.

AI/ML cannot yet provide the same degree of empathy, personal interaction, and trust as good physicians.
It is very likely that AI/ML will massively change the practice of medicine.

It will make medicine more precise and faster.
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