

13-14-15 DECEMBER, 2024

THE RITZ-CARLTON HOTEL, BAKU

What is New in Acute Myocardial Infarction Management in Era of Artificial Intelligence ?

Prof. Dr. Gani Bajraktari, PhD, FESC, FACC

Medical Faculty, University of Prishtina, Prishtina, Kosovo Clinic of Cardiology, University Clinical Centre of Kosova, Prishtina, Kosovo Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Kosovo Society of Cardiology

ALBANIAN ACADEMY OF SCIENCES

AZERBAIJAN CARDIOLOGY FESTIVAL

13-14-15 DECEMBER, 2024 THE RITZ-CARLTON HOTEL, BAKU

Declaration of interest: No Conflict of Interest!

Prof. Dr. Gani Bajraktari, PhD, FESC, FACC

Medical Faculty, University of Prishtina, Prishtina, Kosovo Clinic of Cardiology, University Clinical Centre of Kosova, Prishtina, Kosovo Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Kosovo Society of Cardiology

ALBANIAN ACADEMY OF SCIENCES

Introduction

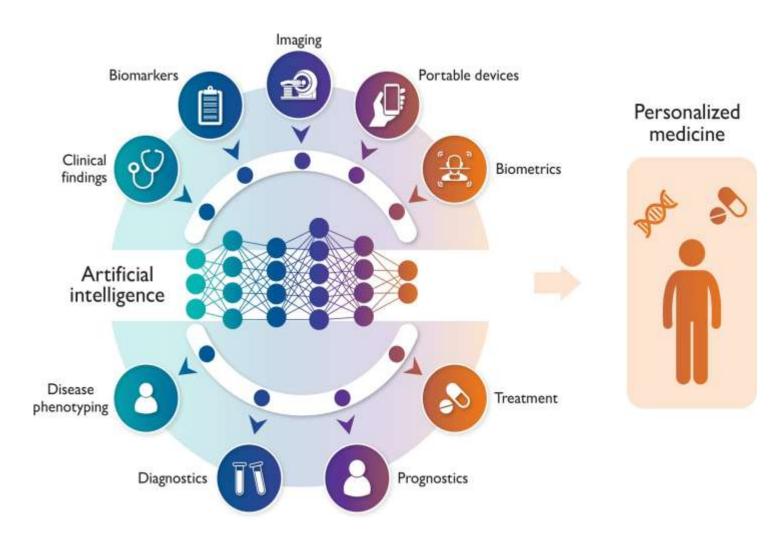
- Intelligence is a feature of humans (*Homo sapiens sapiens*), which distinguishes us in part from other species.
- In evolution, human intelligence, together with the socialization in groups, markedly enhanced by the development of gesturing and speech, allowed us to survive despite an overall weak physical constitution.
- Indeed, intelligent thinking allowed mankind to use and create tools and weapons, develop agriculture, and eventually, modern technology and medicine.
- For centuries, there was consensus that human-level intelligence can only arise from biological human brains yet rapid technological advances in the recent years have led to exponential growth in the number of intellectual tasks that now can be solved by computer-based artificial intelligence (AI), putting this long-held believe into question.

Introduction

STATE OF THE ART REVIEW

Digital health and innovation

Artificial intelligence in cardiovascular medicine: clinical applications


Thomas F. Lüscher (1,2,3,4*, Florian A. Wenzl (1)^{4,5,6,7}, Fabrizio D'Ascenzo (1)⁸, Paul A. Friedman (1)⁹, and Charalambos Antoniades (1)¹⁰

¹Royal Brompton and Harefield Hospitals, London, UK; ²National Heart and Lung Institute, Imperial College London, UK; ³Cardiovascular Academic Group, King's College, London, UK; ⁴Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren – Zurich, Switzerland; ⁵National Disease Registration and Analysis Service, NHS, London, UK; ⁶Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; ⁷Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden; ⁸Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza Hospital, Turin, Italy; ⁹Department of Cardiovascular Medicine, Mayo Clinic and Mayo Foundation, Rochester, MN, USA; and ¹⁰Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK

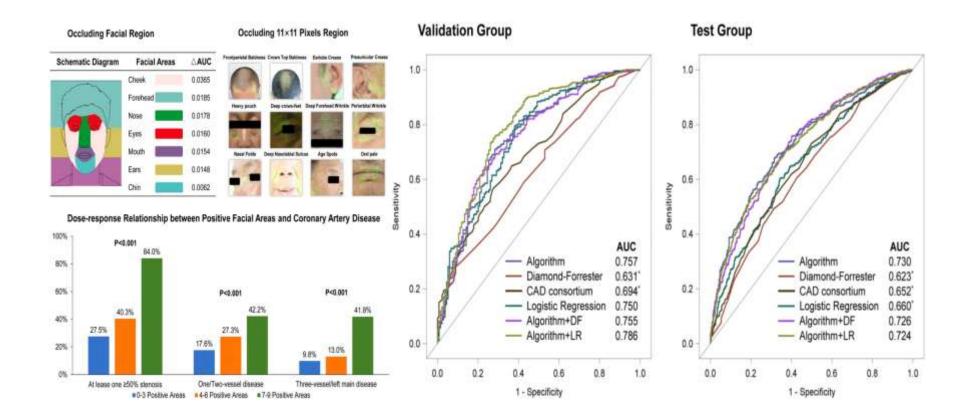
Received 18 March 2024; revised 7 June 2024; accepted 3 July 2024; online publish-ahead-of-print 19 August 2024

Graphical Abstract Clinical information including patient data, laboratory parameters, and results from clinical examination, ...

Eur Heart J, Volume 45, Issue 40, 21 October 2024, Pages 4291–4304, https://doi.org/10.1093/eurheartj/ehae465

Introduction

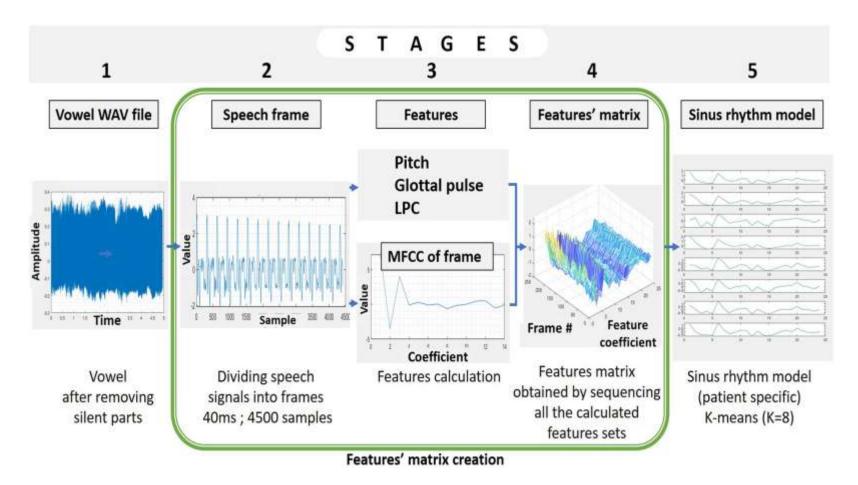
Keywords Abbreviation Artificial intelligence Al		Brief explanation		
		Al is the technology that enables machines, in particular computer systems, to mimic human cognitive function. It integrates tasks like learning, reasoning, problem solving, perception, and understanding language, allowing computers to derive insights from data, make informed decisions, and solve complex problems.		
Convolutional neural network	CNN	CNN represents a specialized architecture tailored for analysing visual imagery, within the broader category DNN. They utilize convolutional layers that apply filtering operations to efficiently capture spatial patterns the data. This makes CNN exceptionally skilled at tasks like image and video recognition, improving the ability to interpret intricate visual inputs.		
Deep learning	DL	DL, a specialized area within ML, utilizes multi-layered neural networks to learn from vast datasets with litt need for manual feature engineering. This approach is highly effective for complex tasks, including image ar speech recognition, as it allows the networks to autonomously discern and analyse various data element		
Deep neural network	DNN	DNN is a sophisticated DL structure in computational models, primarily designed to analyse and process complex data patterns similar to the human brain. This type of network utilizes multiple layers ('deep') processing units to learn from vast amounts of data, enhancing its ability to make accurate predictions ar decisions.		
Large language model	LLM	LLM are advanced DL models, such as the Generative Pre-trained Transformer (GPT), trained on extens text data. These models excel at generating human-like text and understanding natural language, allow them to process and produce language effectively.		
Machine learning	ML	ML, a branch of AI, focuses on creating algorithms and models that train computers to analyse data and m predictions. These algorithms are not explicitly programmed for each task; instead, they enhance their performance as they process more and more data, thereby enabling autonomous learning and decision-making.		
Natural language processing	NLP	NLP is a field within AI aimed at enabling machines to understand, interpret, and respond to human language a way that is both meaningful and useful. This technology is crucial for developing applications such as language translation, sentiment analysis, and voice-activated systems. LLM is a type of DL algorithm desig to handle multiple NLP tasks.		


Introduction

Data source	Common analytical approaches	Potential	Challenges
Imaging data	 Deep learning Convolutional neural networks Image enhancement algorithms 	 High accuracy in image analysis Rapid processing of visual data Efficient pattern detection Advanced feature extraction capabilities 	 Requires extensive computational resources Privacy issues with personal data
Voice recordings	Deep learning	 Patient convenience Continuous health monitoring Early detection of cardiac disease Real-time alerting systems 	Background noise
ECG readings	 Deep neural network Support vector machines 	 Patient convenience Continuous health monitoring Early detection of cardiac disease Real-time alerting systems 	Prone to interference and noise
Text data	Natural language processing	 Insight extraction from unstructured data Health care efficiency 	Ambiguity and context dependence Language and cultural variations
Tabular data (e.g. clinical characteristics)	 Tree-based learning algorithms Neural networks 	 Efficient handling of complex non-linear interactions Efficient handling of high-dimensional data Broad applicability 	 Overfitting to training dataset

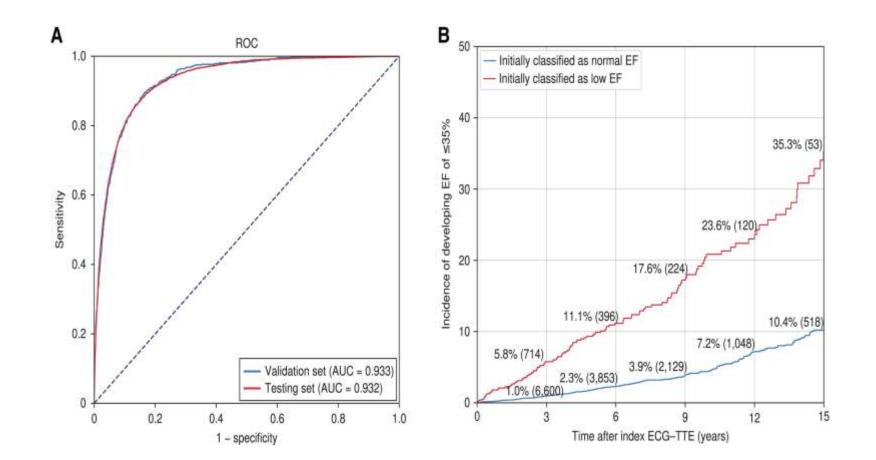
FACE RECOGNITION

Figure 1 Predicting outcomes based on a single facial photograph is feasible with clinically helpful accuracy. CAD, ...


Eur Heart J, Volume 45, Issue 40, 21 October 2024, Pages 4291–4304, https://doi.org/10.1093/eurheartj/ehae465

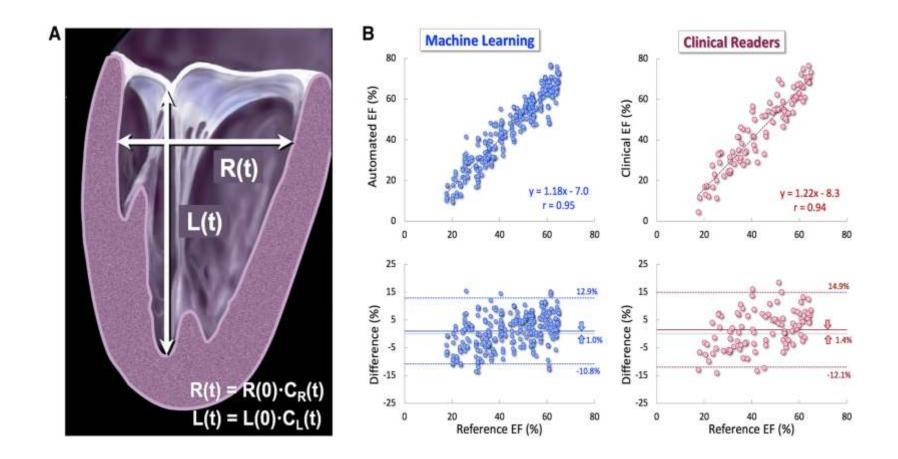
SPEECH ANALYSIS

Figure 2 Creation of the AI-enhanced 'sinus rhythm model' for voice-based recognition of atrial fibrillation. The ...

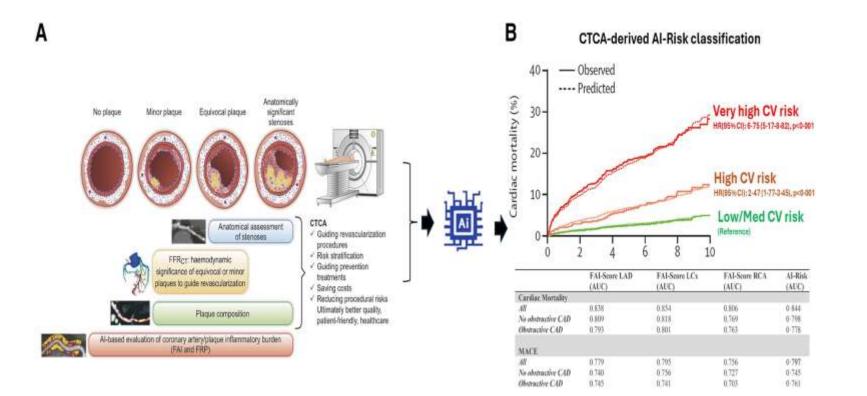

Eur Heart J, Volume 45, Issue 40, 21 October 2024, Pages 4291–4304, https://doi.org/10.1093/eurheartj/ehae465

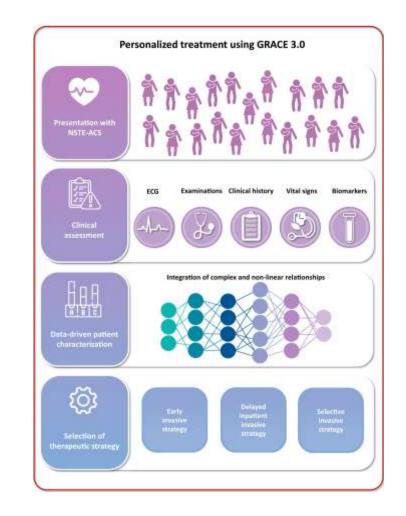
ECG

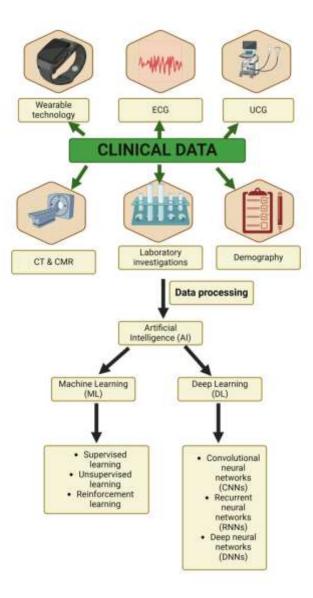
Figure 3 AI/ML-enabled diagnosis of LV dysfunction based on ECG readings. (A) Area under the curve (AUC) of detection ...

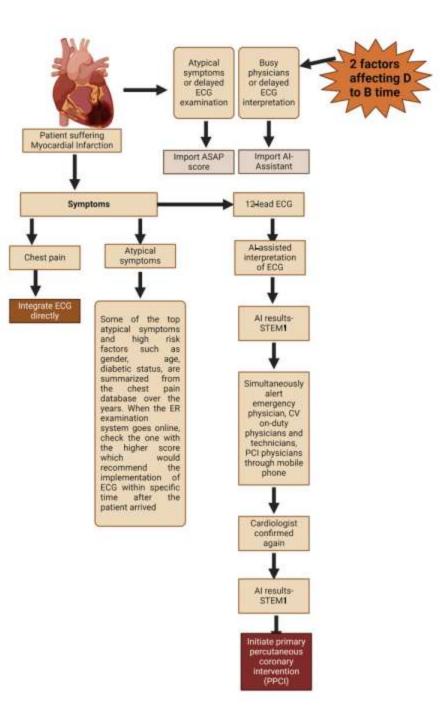


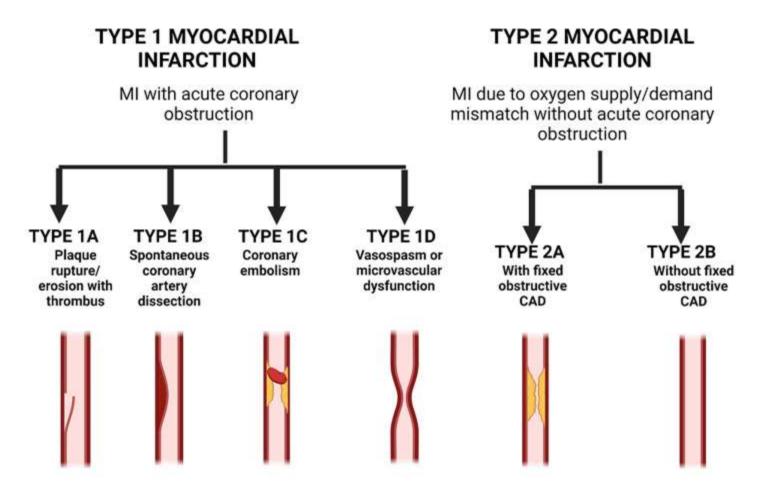
ECHOCARDIOGRAPHY


Figure 4 Al-enhanced calculation of LVEF from echocardiographic images. Schematic representation of the left ventricle ...


Figure 5 Al-based CTCA analysis. CTCA is increasingly becoming a 'one-stop shop' for evaluating patients with stable ...

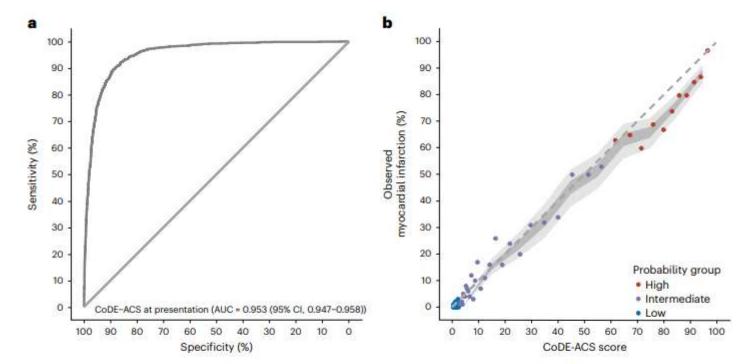

Figure 6 Machine learning-based risk assessment for personalized care of patients with non-ST-elevation acute coronary ...

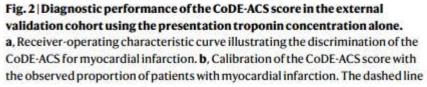




Eur Heart J, Volume 45, Issue 40, 21 October 2024, Pages 4291–4304, https://doi.org/10.1093/eurheartj/ehae465

nature medicine




Article

https://doi.org/10.1038/s41591-023-02325-4

Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations

Received: 4 October 2022	Dimitrios Doudesis @ ^{1,2,32} , Kuan Ken Lee @ ^{1,32} , Jasper Boeddinghaus @ ^{1,3,32} ,		
Accepted: 28 March 2023	Anda Bularga ¹ , Amy V. Ferry ¹ , Chris Tuck ¹ , Matthew T. H. Lowry ¹ , Pedro Lopez-Ayala ³ , Thomas Nestelberger ³ , Luca Koechlin ^{3,4} ,		
Published online: 11 May 2023	Miguel O. Bernabeu ^{2,5} , Lis Neubeck ⁶ , Atul Anand ¹ , Karen Schulz ⁷ ,		
Check for updates	Fred S. Apple ⁸ , William Parsonage ⁹ , Jaimi H. Greenslade ^{(10,11,12} , Louise Cullen ^{(10,11,12} , John W. Pickering ^{(13,14} , Martin P. Than ¹³ , Alasdair Gray ¹⁵ ,		
a.'	Christian Mueller ³ , Nicholas L. Mills ^{1,2} & CoDE-ACS Investigators*		

represents perfect calibration. Each point represents 100 patients. Patients are grouped as low (<3), intermediate (3-60) or high probability (≥ 61) of myocardial infarction. The darker shaded area represents the 95% CI, while the lighter shaded area represents the 99% CI. AUC, area under curve.

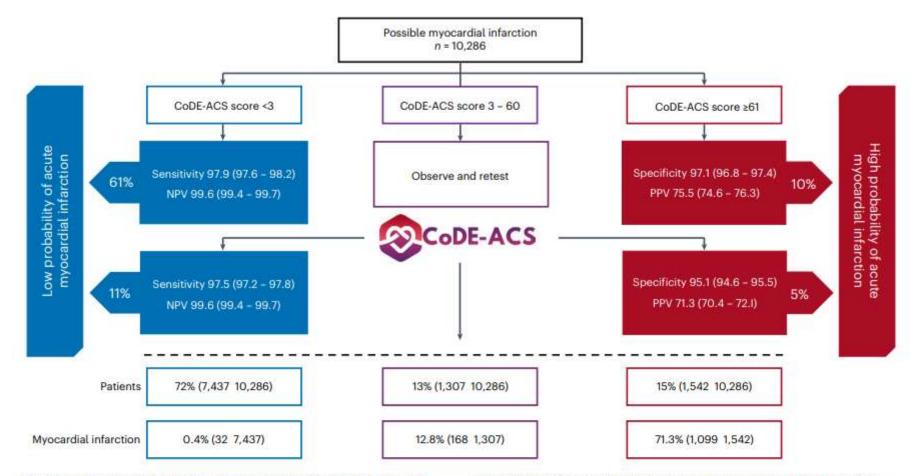
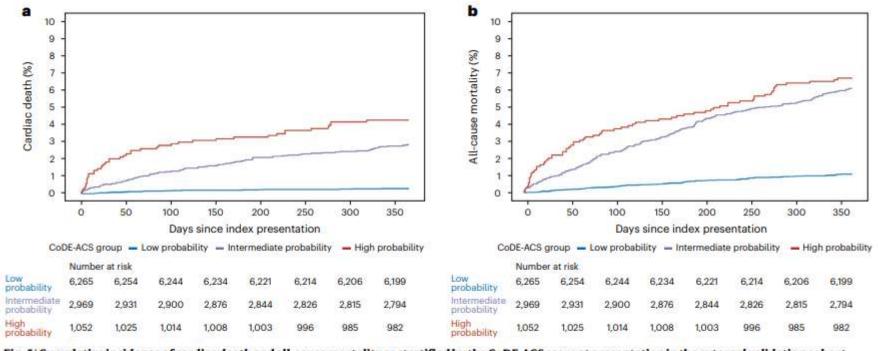
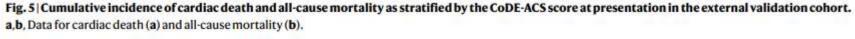
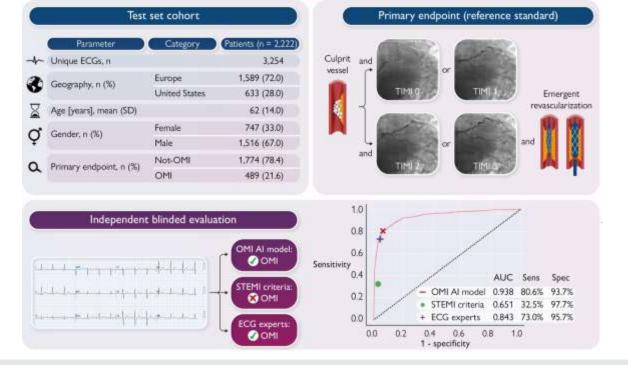




Fig. 3 | External validation of the performance of the CoDE-ACS pathway in 10,286 patients with possible myocardial infarction. Diagnostic performance of CoDE-ACS models in 10,286 patients from seven international cohorts. Sensitivity, negative predictive value (NPV), specificity and positive predictive value (PPV) with 95% CIs of the CoDE-ACS scores were used to identify patients as low probability (<3) or high probability (\geq 61) of myocardial infarction at presentation and after serial troponin testing if required.



International evaluation of an artificial intelligence-powered electrocardiogram model detecting acute coronary occlusion myocardial infarction

Robert Herman ()^{1,2,3,*}, Harvey Pendell Meyers⁴, Stephen W. Smith^{5,6}, Dario T. Bertolone^{1,2}, Attilio Leone^{1,2}, Konstantinos Bermpeis^{1,2}, Michele M. Viscusi^{1,2}, Marta Belmonte^{1,2}, Anthony Demolder³, Vladimir Boza^{3,7}, Boris Vavrik³, Viera Kresnakova^{3,8}, Andrej Iring³, Michal Martonak³, Jakub Bahyl³, Timea Kisova^{3,9}, Dan Schelfaut ()², Marc Vanderheyden ()², Leor Perl ()¹⁰, Emre K. Aslanger¹¹, Robert Hatala¹², Wojtek Wojakowski¹³, Jozef Bartunek², and Emanuele Barbato ()¹⁴

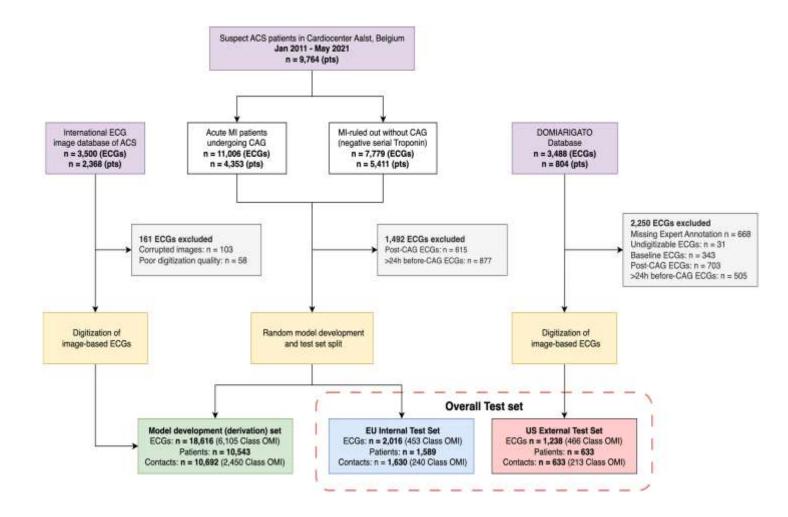
¹Department of Advanced Biomedical Sciences, University of Naples Federico II, C.so Umberto I, 40, 80138 Naples, Italy; ²Cardiovascular Centre Aalst, OLV Hospital, Moorselbaan 164, Aalst 9300, Belgium; ³Powerful Medical, Bratislavska 81/37, 931 01 Samorin, Slovakia; ⁴Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC, USA; ⁵Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, USA; ⁶Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN, USA; ⁷Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia; ⁸Department of Cybernetics and Artificial Intelligence, Technical University of Kosice, Kosice, Slovakia; ⁹Faculty of Medicine and Dentistry, Barts and The London School of Medicine and Dentistry, London, UK; ¹⁰Department of Cardiology, Rabin Medical Center, Petah Tikvah, Israel; ¹¹Department of Cardiology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey; ¹²Department of Arrhythmia and Pacing, National Institute of Cardiovascular Diseases, Bratislava, Slovakia; ¹³Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland; and ¹⁴Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy

Received 14 September 2023; revised 13 October 2023; accepted 2 November 2023; online publish-ahead-of-print 28 November 2023

Key question

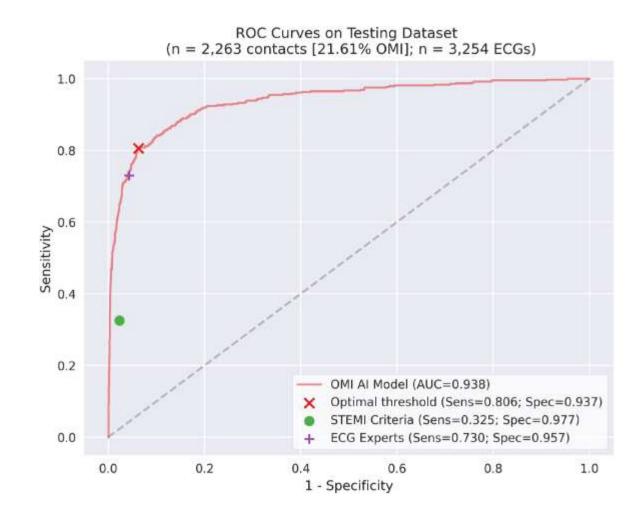
Can an artificial intelligence (AI) model detect an acutely occluded or obstructive culprit coronary artery [occlusion myocardial infarction (OMI)] lesion using only single-standard 12-lead electrocardiograms (ECGs)?

Key finding


The occlusion myocardial infarction AI ECG model outperforms guideline-recommended ST-elevation myocardial infarction (STEMI) criteria in detecting angiographically confirmed OMI and remains robust in subgroup analysis.

Take home message

The OMI AI ECG model has the potential to improve acute coronary syndrome triage and clinical decision-making by enabling timely and accurate detection of OMI regardless of ST elevation. This automated deep learning approach demonstrated two times higher sensitivity in detecting angiographically confirmed OMI from single-standard 12-lead ECGs compared to the standard of care in geographically distinct cohorts.


Figure 1 A PRISMA flow chart showing data sources and study populations. Suspect acute coronary syndrome patients ...

Eur Heart J Digit Health, Volume 5, Issue 2, March 2024, Pages 123–133, https://doi.org/10.1093/ehjdh/ztad074

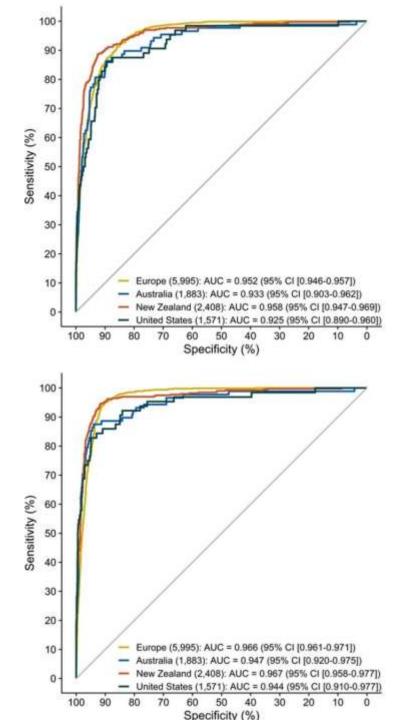
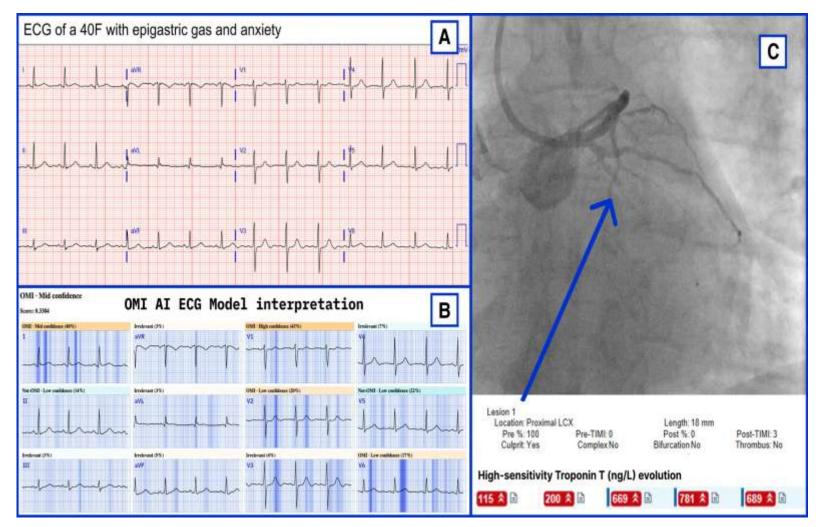


Figure 2 Artificial intelligence model performance on the overall testing data set. The receiver operating ...


Eur Heart J Digit Health, Volume 5, Issue 2, March 2024, Pages 123–133, https://doi.org/10.1093/ehjdh/ztad074

- Receiver-operating-characteristic (ROC) curve illustrating discrimination of the CoDE-ACS for myocardial infarction.
- (a) Using the presentation cardiac troponin measurement.
- (b) Using the serial cardiac troponin measurement

Figure 4 A real-world demonstration of an occlusion myocardial infarction artificial intelligence true-positive ...

Eur Heart J Digit Health, Volume 5, Issue 2, March 2024, Pages 123–133, https://doi.org/10.1093/ehjdh/ztad074

CONCLUSIONS

- AI/ML algorithms provide information not accessible for the clinician, particularly in imaging and ECG analysis ('see what you can't see').
- This way, risk prediction is more precise as documented by the AI/ML-enabled GRACE 3.0 score, among others.
- AI/ML-enabled information is much faster. As a consequence, physicians will have better information and more time to discuss management options with their patients.
- AI/ML-provided information on diagnostics and guideline-based therapeutic options are provided comprehensively and timely.
- AI/ML cannot yet provide the same degree of empathy, personal interaction, and trust as good physicians.
- It is very likely that AI/ML will massively change the practice of medicine.
- It will make medicine more precise and faster.

13-14-15 DECEMBER, 2024 THE RITZ-CARLTON HOTEL, BAKU

Thank You !

Teşekkür ederim! Faleminderit!

